

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-easymode 1.4b4 documentation

Easymode : toolkit for making xml based flash websites

With easymode you can create backends for dynamic flash/flex websites.
Easymode makes internationalization simple and outputs xml by
default. To tailor the xml to your application, you can transform
it using xslt templates, which easymode integrates.

For more info, look at Why does easymode exist?

Manual

	Release Notes

	Internationalization and localization of django models, with admin support

	Translation of database content using gettext

	Automatic generation of xml from models using xslt

	Admin support for model trees with more than 2 levels of related items

	Easymode settings

	Management Commands

	Easyfilters

	Middlewares

	Injecting extra data into the XSLT

The best way to learn how easymode works, is to read the above topics in sequence
and then look at the example_app. If you have questions please send them
to the mailing list at easymode@librelist.com.

Installation

You can download easymode from:

http://github.com/specialunderwear/django-easymode/downloads/

Or you can do:

	pip install django-easymode

Or:

	pip install -e git://github.com/specialunderwear/django-easymode.git#egg=easymode

Note the version number in the top left corner and use:

	easy_install http://github.com/specialunderwear/django-easymode/tarball/[VERSION]

Which, if the version was v0.1.0 would become http://github.com/specialunderwear/django-easymode/tarball/v0.1.0.

If you want to use easymode’s xslt fascilities, make sure to install either
lxml [http://codespeak.net/lxml/] or
libxslt [http://xmlsoft.org/XSLT/python.html].

Requirements

Easymode requires python 2.6, furthermore the following packages must be installed:

	Django

The following packages might also be required, depending on what features you
are using.

	lxml

	polib

	django-reversion

Example

Easymode comes with an example app which is available from github:

http://github.com/specialunderwear/django-easymode/

To run the example app, you must clone the repository, install the dependencies
and initialize the database:

git clone http://github.com/specialunderwear/django-easymode.git
cd django-easymode
pip install -r requirements.txt
cd example
python manage.py syncdb
python manage.py loaddata example_data.xml
python manage.py runserver
open http://127.0.0.1:8000/

Unsupported django features

The following features, which django supports, are not supported by easymode:

	unique_together [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.unique_together]

	unique_for_date [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.unique_for_date], unique_for_month [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.unique_for_month],
unique_for_year [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.unique_for_year]

	django.contrib.admin.ModelAdmin.fields [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fields], use django.contrib.admin.ModelAdmin.fieldsets [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets] instead.

	Inheritance for models is restricted to abstract [http://docs.djangoproject.com/en/dev/ref/models/options/#django.db.models.Options.abstract] base classes.
This is a direct result of the fact that OneToOneField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.OneToOneField] are not supported by
the serializer.

	django.contrib.admin.ModelAdmin.prepopulated_fields [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.prepopulated_fields] is not supported.

	You can not use fields marked for translation with
I18n in the ordering attribute of a model’s
Meta options.

	Unfortunately, the new template loaders are not supported with xslt templates. Please use the
old, deprecated ones like
	django.template.loaders.app_directories.load_template_source()

	django.template.loaders.filesystem.load_template_source()

Most these features are not supported because the ammount of work to have them
was greater than the benefit of having them. However, it could also be that I
just didn’t need it yet [http://c2.com/xp/YouArentGonnaNeedIt.html].

Actionscript bindings

If you are developing flex or flash sites with easymode, you are invited to try
out the new actionscript bindings at

http://github.com/specialunderwear/robotlegs-dungdungdung

These integrate object creation and databinding for easymode’s xml output.

Api docs

	easymode.urls

	easymode.i18n

	easymode.i18n.decorators

	easymode.i18n.admin.decorators

	easymode.tree

	easymode.tree.xml.decorators

	easymode.tree.xml.query

	easymode.tree.admin.relation

	easymode.tree.admin.abstract

	easymode.tree.introspection

	easymode.xslt

	easymode.xslt.response

	easymode.utils

	easymode.utils.xmlutils

	easymode.utils.languagecode

	easymode.utils.polibext

	easymode.utils.standin

	easymode.utils.template

	easymode.admin.utils

	easymode.admin.models.fields

	easymode.admin.forms.fields

	easymode.debug

	easymode.debug.middleware

Version naming convention

	Each update to the development status will increase the first digit. (eg beta or alpha or production ready)

	Each new feature will increase the second digit.

	Each bugfix or refactor will increase the last digit

	An update to a ‘big’ digit, resets the ‘smaller’ digits.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Release Notes

v1.4b4

Fixes Exception in standin_for(): a new-style class can’t have only classic bases.

v1.4b3

Fixed Django 1.5 template requirements for admin media.

v1.4b2

Fixes I18n for models with tuple permissions.
Allow custom admin class for register_all.
fixes wrong import in easymode.tree.admin.forms.

v1.4b1

This release fixes most incompatibilities of easymode with django 1.4.
Most importantly, it fixes i18n. This release is therefor meant to be
used with django 1.4.

v1.0b1

Easymode is now moving towards the 1.0 release. I took the liberty of removing
code whose usefulness was dubious and also refactor mercilessly. You will
also find some very nice new features in this release!

That being said, you can not simply update and run an existing application on
this release!

Backward incompatible changes:

	The names of localized table columns are constructed differently now. Upgrading means migrating all your column names!

	Easypublisher was removed, because it was too hard to maintain.

	All xml related code moved to the package easmode.tree.xml.

	DiocoreCharField, DiocoreHTMLField, DiocoreTextField, CSSField,
IncludeFileField, RemoteIncludeField where removed.

New features:

	New tree module, which uses real inlines See Admin support for model trees with more than 2 levels of related items.

	You can now hook into xml serialization and have custom serialization for both
your models as your custom model fields See When the standard serializer is not enough.

Bugs fixed:

	Fields marked for translation with I18n can
now be sorted on in the admin when they are included in list_display.

	Order_by now works on translated fields with 5 letter locales:

from django.utils.languagecode import get_real_fieldname

this now works:
MyModel.objects.order_by(get_real_fieldname('somefield', 'en-us'))

v0.14.5

Models decorated with I18n nolonger have problems deleting related models in
cascade mode.

v0.14.4

Easymode nolonger installs any packages automatically during installation, these
should now be installed by hand.

v0.14.3

Using super in an admin class decorated with L10n, will nolonger result in
infinite recursion.

v0.14.2

Fixes SafeHTMLField‘s buttons property, which can be used to override the tinymce buttons per field.

v0.14.1

ForeignKeyAwareModelAdmin now properly handles parent_link that points to a model
in a different app.

v0.14.0

Added nofollow option to mark foreign keys that shouldn’t be followed by the
serializer. Nofollow can be used to optimize easymodes queries when generating
xml, see Exclude certain relations from being followed by the serializer.

v0.13.7

	Fallbacks for translatable fields now also work when the first fallback is not
the MSGID_LANGUAGE.

v0.13.6

	You can now override the model form of an admin class decorated with L10n, just
like normal admin classes.

v0.13.5

	Easymode nolonger patches SubFieldBase. Fields that throw Exceptions when their
descriptor is accessed can now also be internationalized using I18n. This
includes ImageField and FileField.

v0.13.4

	standin_for() now returns a standin that can be
pickled and unpickled.

v0.13.3

	register_all will nolonger try to register abstract models

	search_fields is now supported for ModelAdmin classes that use L10n, however it
will not let you access related items.

	You can now use fieldsets with the Can edit untranslated fields permission.

	Added support for creating new objects to easypublisher.

	Added tools to build preview functionality for drafts.

	Added filter that removes unpublished items from the xml.

	fixed error ‘cannot import name introspection’ caused by a circular import.

v0.10.5

	Added option to exclude models from register_all

	Backwards incompatible change: easymode nolonger has any bindings for
django-cms.

	Easymode will now show you the origin of a value, by displaying symbols next to
the input field in the admin:
	If a value is from the gettext catalog or fallback, easymode will display ∴°

	If a value is from the database, but the catalog has a different value, easymode will
display ∴⁺ . You can hover over this symbol to see the catalog value.

	If a value is from the database and there is no conflict with the catalog, easymode will
display only ∴

	Fixed bug where a value that evaluated to None was set with the string None instead of
types.NoneType None

	fixes bug where get_localized_property would crash if settings did not have
FALLBACK_LANGUAGES defined.

	django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] and django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey]
are now handled by the default xslt (‘xslt/model-to-xml.xsl’).

v0.9.3

	fixes easymode.admin.abstract.AbstractOrderedModel

	register_all will ignore models that are django.contrib.admin.sites.AlreadyRegistered,
but still register other models in the module.

v0.9.2

	Fixed bug in recursion_depth context manager and added tests.

v0.9.1

	Modified the xslt parser to use the file path instead of a string, so you can
use xsl:include now.

	libxsltmod is nolonger a supported xslt engine

	Added util to add register all models in some module in one go.

v0.8.6

	Easymode will nolonger complain about rosetta, polib and tinymce when none of
the features that require these packages are used.

	Moved polib util to easymode.utils.polibext to avoid name clashes

	DiocoreTextField now accepts cols and rows as parameters.

	The mechanism to add extra attributes to the xml produced by the serializer is
now more generic. If a field has the ‘extra_attrs’ property, these attributes
will be added as attributes to the field xml.

	Updated the serializer to support natural keys:
http://docs.djangoproject.com/en/dev/topics/serialization/#natural-keys

	Now easymode can automatically serialize many to many fields. The recursion is
guarded, and will let you know when you made a cyclic relation in you model
tree. (see RECURSION_LIMIT).

	mutex now raises SemaphoreException instead of doing sys.exit().

	When to_python returns a weird object on a field instead of a string, it is now converted to unicode
before it is used as a msgid.

v0.6.1

	DiocoreHTMLField will now also show a tinymce editor when it
is not internationalized.

	When there is a problem with monkey patching django.db.models.SubfieldBase easymode
will throw an exception. (Monkey patch fixes http://code.djangoproject.com/ticket/12568).

	New field aded, CSSField, which allows specification of css classes
for a rich text field, the css classes will appear in the xml as:

style="class1,class2"

v0.6.0

	Django 1.2 is required for easymode as of v0.6.0.

	get_real_fieldname() now returns
a string instead of unicode. This way a dict [http://docs.python.org/library/stdtypes.html#dict] can
be constructed using it’s results as keys, and the dict can be turned
into keyword arguments of filter when doing a query in a specific
language.

	Small improvements in error handling when AUTO_CATALOG is True

v0.5.7

	Added easymode.admin.models.fields.SafeTextField, a textfield which strips
all cariage returns before saving, which is required when using
Automatic catalog management.

	Updated django requirement to v1.1.2 because python 2.6.5 will otherwise
make the unit tests fail.

v0.5.6

	The example app now has a working fixture.

v0.5.5

	Special admin widgets are nolonger discarded by easymode (issue #3)

v0.5.4

	Some data files where not installed correctly by setup.py

v0.5.3

	Added AUTO_CATALOG setting, see Automatic catalog management.

	Fixed error in easy_locale when two properties in the
same model have the same value (eg. title and subtitle are the same).

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Internationalization and localization of django models, with admin support

At times it becomes a requirement to translate models. Django supports
internationalization of static text in templates and code by means of gettext.
For translation of models - dynamic data - easymode offers simple decorators to
enable internationalized model fields and localized admin classes.

Internationalization of models

Note

There is one requirement models fields have to satisfy to be able to be
internationalised by easymode. Their
to_python() method may not access self.

suppose we have the following model.

from django.db import models

class Foo(models.Model):
 bar = models.CharField(max_length=255, unique=True)
 barstool = models.TextField(max_length=4)
 website = models.URLField()
 address = models.CharField(max_length=32)
 city = models.CharField(max_length=40)

In different languages the city could have a different name, so we would like to
make it translatable (eg. internationalize the city field). This can be done using
the I18n decorator. Decorating the model as
follows makes the city field translatable:

from django.db import models
from easymode.i18n.decorators import I18n

@I18n('city')
class Foo(models.Model):
 bar = models.CharField(max_length=255, unique=True)
 barstool = models.TextField(max_length=4)
 website = models.URLField()
 address = models.CharField(max_length=32)
 city = models.CharField(max_length=40)

Now the city field is made translatable. As soon as you register this model
with the admin, you will notice this fact. Depending on how many languages you got
in LANGUAGES this is how your change view will look:

[image: ../_images/non-localized.png]
While useful, the interface can become very cluttered when more fields need to
be internationalized. To make the interface less cluttered the admin class that
belongs to the model, can be Localized making it show only the fields in the
current language.

Localization of models in django admin

As there are several options to register a model for inclusion in django’s admin,
there are also several options to localize the admin classes.

The simplest way to make a model editable in the admin is:

from django.contrib import admin
from foobar.models import Foo

admin.site.register(Foo)

Since the admin class is implicit here, there is no way we can localize the
admin class this way. The next simplest way is:

from django.contrib import admin
from foobar.models import Foo

admin.site.register(Foo, models.ModelAdmin)

Here the admin class is explicit, so we can modify it. The way this is done is by
using the L10n class decorator:

from django.contrib import admin
from easymode.i18n.admin.decorators import L10n
from foobar.models import Foo

admin.site.register(Foo, L10n(Foo, models.ModelAdmin))

Note that the decorator needs the model to determine which fields are localized, so
it must be passed as a parameter. Now the change view in the admin looks as follows:

[image: ../_images/localized.png]
All the ‘city’ fields are hidden, except for the field in the current language. Note
That all fields which can be translated are marked with ∴ . To edit the content for
the other languages, the current language must be switched. Please refer to
Translation of database content using gettext for more details.

There is one more way a models can be registered for the admin and that is by creating
a new descendant of ModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin] for a specific model. You can now also use the
L10n decorator with the new class decorator syntax:

from django.contrib import admin
from easymode.i18n.admin.decorators import L10n

from foobar.models import Foo

@L10n(Foo)
class FooAdmin(admin.ModelAdmin):
 """Generic Admin class not specific to any model"""
 pass

admin.site.register(Foo, FooAdmin)

Note that you still have to pass the model class as a parameter to the decorator.

For admin classes that specify the model attribute you can leave that out:

from django.contrib import admin
from easymode.i18n.admin.decorators import L10n

from foobar.models import Foo

@L10n
class FooAdmin(admin.ModelAdmin):
 """Admin class for the Foo model"""
 model = Foo

admin.site.register(Foo, FooAdmin)

As you can see there isn’t much to making models translatable this way.

Inline and GenericInline ModelAdmin

All easymode’s localization mechanisms fully support django’s flavors of
InlineModelAdmin, both normal and generic. While there is no need to
register these types of ModelAdmin classes, you still need to decorate them
with L10n if you need them to
be localized.

Fieldsets are also supported

fieldsets [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets] are supported for admin classes decorated with
L10n. However fields [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fields]
is not supported, because easymode uses it to hide fields. Since you can do the exact
same thing with fieldsets, this should not be a problem.

Don’t internationalize relations

@I18n('available', 'text')
class SomeModel(models.Model):
 parent = models.ForeignKey('myapp.ParentModel', related_name='children')
 available = models.BooleanField(_('Available in this language'), default=True)
 text = models.TextField(_('The main issue'))

In the above example it is tempting to internationalize the parent relation, so
you can exclude the content for some language, or maybe even give it an entirely
different parent.

Most likely using I18n
on ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey], ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField],
or OneToOneField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.OneToOneField] is not going to work.

When you are internationalizing a relation, most of the time you want to make
content available in one language, but maybe not the other. It is better to have
an internationalized BooleanField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.BooleanField] and exclude content
for other languages in that way.

When you’ve got different urls or domains for different languages, you should use
the django.contrib.sites [http://docs.djangoproject.com/en/dev/ref/contrib/sites/#module-django.contrib.sites] framework instead.

Use lazy foreign keys

You should always use lazy foreign keys in combination with the
the I18n decorator. Lazy foreign keys helps
to avoid cyclic imports, to which class decorators are extra sensitive.

If for example you’ve got your models in a package instead of a module, you
need to import them all in the __init__.py module:

from bar.models.foo import *
from bar.models.baz import *

This way django will find them when it is collecting and verifying all models
at boot time.

BUT!

Now you’ve got 2 ways to import the model Foo:

from bar.models import Foo

or:

from bar.models.foo import Foo

Django imports all models using the first syntax. If you would use the second to
import the model somewhere else, in rare cases, the module get’s initialized twice.
This means the class decorator will get applied twice. And that gives you a very
very strange error.

To avoid all this, just use lazy foreign keys everywhere. That way you never have to
import models in other models module avoiding the problem entirely.

It is safe to import models in your views and admin modules ofcourse, but
use only the canonical import, directly from models and not some sub package:

from bar.models import Foo

Haystack

As a general rule, never import models into modules that are collected by django’s
importlib. This includes other models modules but also
some third party extensions like django-haystack use it (or something like it).
Haystack automatically collects all search_indexes modules.

When you absolutely have to import a model in an automatically collected file, do
it like this:

from django.db import get_model
Foo = get_model('bar', 'Foo')

Yes, that uses django’s lazy model loading mechasism as well. It is much easier though
to register you models for haystack inside the models.py module and not in the
search_indexes module.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Translation of database content using gettext

When using the i18n and
l10n features of easymode, you can use gettext’s
standard translation features to translate all the database content.

Automatic catalog management

If the MASTER_SITE and AUTO_CATALOG directive are set to True,
every time a model decorated with I18n is
saved, easymode wil add an entry to the corresponding gettext catalog [1].
(for all the options related to the location of the catalogs please refer to
Easymode settings). The default for AUTO_CATALOG is False, the default
for MASTER_SITE is also False.

For each language in your LANGUAGES directive, a catalog will be created.
This way you can translate all the content using something like
poedit [http://www.poedit.net/] or
rosetta [http://code.google.com/p/django-rosetta/]. This is especially
convenient when a new site is created, for the first big batch of translations.

For modifications afterward, you can just use the admin interface, which will
show the translations from the gettext catalog if they exist.

TAKE CARE

The translation mechanism using gettext is best used when a site is initially
going to be translated to other languages. After this fase, content will most likely be
edited directly in the admin interface, and you can have issues with translations not
showing up. This can happen when content was allready stored in the database, as
described in Database is bigger than gettext. In effect any changes made to the gettext
catalog after editors are changing content in the admin interface has a very low
probability of being shown on the website [2]. However, easymode will help you,
showing you the origin of a value in the admin, by displaying symbols next to the
input fields:

	If a value is from the gettext catalog or fallback, easymode will display ∴°

	If a value is from the database, but the catalog has a different value, easymode will
display ∴⁺ . You can hover over this symbol to see the catalog value.

	If a value is from the database and there is no conflict with the catalog, easymode will
display only ∴

It takes proper planning to make full use of the
gettext capabilities of easymode. The proper workflow is:

	edit and add base content of the website, ALL OF IT and make sure you don’t want
to modify it anymore.

	translate content using gettext, and completely stop all editing, just
lock up the site during translation! [3] [4]

	edit and modify all you like in the admin, all translations will be there. [5]

If you choose to deviate from this workflow be sure to understand all the next topics
and learn how to use easy_reset_language.

Translation mechanism explained

It is important to realise, that allthough you can make translations using gettext,
the catalog is not the only place where translations are stored. The
I18n decorator not only registers a model
for catalog management, it also modifies the model.

suppose we have a model as follows:

@I18n('bar')
class Foo(models.Model):
 bar = models.CharField(max_length=255)
 foobar = models.TextField()

Normally the database would look like this:

CREATE TABLE "foobar_foo" (
 "id" integer NOT NULL PRIMARY KEY,
 "bar" varchar(255) NOT NULL,
 "foobar" text NOT NULL
)

The I18n decorator modiefies the model,
given we’ve got both ‘en’ and ‘yx’ in out LANGUAGES directive this is what
the model would look like on the database end:

CREATE TABLE "foobar_foo" (
 "id" integer NOT NULL PRIMARY KEY,
 "bar_en" varchar(255) NULL,
 "bar_yx" varchar(255) NULL,
 "foobar" text NOT NULL
)

On the model end you would not see this, because you will still access bar
like this:

>>> m = Foo.objects.get(pk=1)
>>> m.bar = 'hello'
>>> print m.bar
hello

Any field that is internationalized using the
I18n decorator will always return the
field in the current languge, both on read and on write.

Database is bigger than gettext

Only when a field is empty (None) in the database for the current language, the
gettext catalog will be consulted for a translation

This way, a model has exactly the same semantics as before, in that we can read
and write to the property, the way we defined it in it’s declaration. We
still get the gettext goodies, which is nice when large ammounts of text must be
translated.

If the gettext catalog would be the only place where the translations
would be stored, having proper write semantics would become very difficult.

Example:

>>> from django.utils.translation import activate

>>> m = Foo()
>>> m.bar = 'hello'
>>> m.bar
'hello'
>>> activate('yx')
>>> m.bar
'hello'
>>> m.bar = 'xy says hello'
>>> m.bar
'xy says hello'
>>> activate('en')
>>> m.bar
'hello'

What you’ll notice is that m.bar is allready available in the language ‘yx’
even though we did’t specify it’s value yet. This is because the normal behaviour
of gettext is to return the msgid if the msgstr is not yet available.
This is because the value for m.bar in language ‘yx’ was resolved as follows:

	see if the database value bar_yx is not null, if so return bar_yx

	see if the msgstr for ‘hello’ (The value of m.bar in the
MSGID_LANGUAGE) exists if so return ugettext(‘hello’)

	otherwise return the value in the fallback language

Importing translations is implicit

One thing that follows from the mechanics as described above, is that there is
no need to explicitly import translations from gettext catalogs into the database.

Importing does take place however, each time a model is saved in the admin, the
translations are written to the database.

This is because the translations from the gettext catalog ARE displayed in the
admin, which means they ARE present in the form, but since the database column
itself is EMPTY it will be marked as a change and written to the appropriate
field.

This implicit import could pose a problem. If for example a model was edited in the
admin, BEFORE the gettext catalog was properly translated and imported, it could
be that the wrong value, from some fallback language
got written to the database. Because the database get’s precedence over the
gettext catalog, the new translation would never show up.

This inconvenience can be resolved using the easy_reset_language command

	[1]	It is possible to have more finegrained control over which models
should be automatically added to the catalog by settings AUTO_CATALOG to
False and using easymode.i18n.register() to register individual models.
More info in the AUTO_CATALOG docs.

	[2]	Obviously, other gettext
catalogs, generated from static content, that are not managed by easymode are unaffected.

	[3]	You can make sure nobody goes into the admin to edit things, by commenting out the admin
routes in urls.py the new message id. Unless the content is allready saved in the database (Database is bigger than gettext).

	[4]	If you don’t lock up the admin you might have issues with
translations not showing up. Someone could for some reason save an item in the wrong language.
This means the value in the database will be used instead of the translation in the catalig.
You can detect when this has happened by looking for a ∴⁺ sign in the admin next to the untranslated field.
Hover over the field to see the value in the catalog.

	[5]	Watch out
when you completely replace existing content in the MSGID_LANGUAGE. The
MSGID_LANGUAGE is used for the message id’s in the catalogs. When you completely
replace the existing message id with something different, gettext will see that as adding
a new message instead of changing an existing message. When this happens, translations
can nolonger be associated with the new message and all languages will fall back to

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Automatic generation of xml from models using xslt

Most of the data being transferred to a flash frontend is in xml. This is both
because xml is very well supported by Flash (e4x) and because hierarchical data
is easily mapped to xml. Most data used for flash sited is hierarchical in nature,
because the display list -flash it’s version of html’s DOM- is hierarchical
as well.

What easymode tries to do is give you a basic hierarchical xml document that
mirrors your database model, which you can then transform using xslt [1].

Why Xslt?

Xslt is a functional programming language, specifically designed to
transform one type of xml into another. So if we can reduce django’s template
rendering process to transforming one type of xml to another, xslt would be a
dead on match for the job.

In fact we can. Easymode comes with a special xml serializer. This serializer
differs from the normal django serializers, in that it treats a foreign key
relation as a child parent relation. So while django’s standard serializers
output is flat xml, easymode’s serializer outputs hierarchical xml.

Relations must be organized as a DAG

In order for easymode to be able to do it’s work, the model tree should be organised
as a DAG [http://en.wikipedia.org/wiki/Directed_acyclic_graph]. if you accidently
created a cycle (using ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] relations), easymode
will let you know and throw an exception. Any ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField]
that is related to “self” will be ignored by the serializer.

Most of the time you don’t really need the cyclic relation at all. You just need to do
some preprocessing of the data. You can render a piece of xml yourself, without using
easymode’s serializers and pass it to the xslt, see Injecting extra data into the XSLT.

Getting xml from a model

There are several ways to obtain such a hierarchical xml tree from a django model.
The first is by decorating a model with the toxml() decorator:

from easymode.tree.xml.decorators import toxml

@toxml
class Foo(models.ModelAdmin):
 title = models.CharField(max_length=255)
 content = TextField()

class Bar(models.ModelAdmin):
 # use lazy foreign keys!
 # Even in the same models module!
 foo = models.ForeignKey('Foo', related_name=bars)

 label = models.CharField(233)

The Foo model has now gained a __xml__ method on both itself as on the
queryset it produces. Calling it will produce hierarchical xml, where all inverse
ForeignKey [2] relations are followed (easymode’s serializer follows the
managers on a related model).

The preferred method for calling the __xml__ method is by it’s function:

from easymode.tree.xml import xml

foos = Foo.objects.all()
rawxml = xml(foos)

Getting xml from several queries

The next option, which can also be used with multiple queries, is use the
XmlQuerySetChain

from easymode.tree.xml import xml
from easymode.tree.xml.query import XmlQuerySetChain

foos = Foo.objects.all()
qsc = XmlQuerySetChain(foos)
rawxml = xml(qsc)

Normally you would use the XmlQuerySetChain to
group some QuerySet objects together into a single
xml:

from easymode.tree.xml import xml
from easymode.tree.xml.query import XmlQuerySetChain

foos = Foo.objects.all()
hads = Had.objects.all()

qsc = XmlQuerySetChain(foos, hads)
rawxml = xml(qsc)

Using xslt to transform the xml tree

Now you know how to get the xml as a tree from the models, it is time to show
how xslt can be used to transform this tree into something a flash developer can
use for his application.

Easymode comes with one xslt template [3] that can give good results,
depending on your needs:

from easymode.xslt.response import render_to_response

foos = foobar_models.Foo.objects.all()
return render_to_response('xslt/model-to-xml.xsl', foos)

The render_to_response() helper function will take an xslt as a template and a
XmlQuerySetChain or a model/queryset decorated with
toxml() to produce it’s output.
Additionally you can pass it a dict [http://docs.python.org/library/stdtypes.html#dict] containing xslt parameters. You have to
make sure to use prepare_string_param() on any xslt parameter that
should be passed to the xslt processor as a string.

Other helpers can be found in the easymode.xslt.response module.

When the standard serializer is not enough

It could be that the raw values are not what you want from your model. For
example, it could be you wanted a datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] nicely formatted or
maybe you want to have the output of get_absolute_url in your xml.

Fortunately you can do that by implementing your own serialization function in
your model:

@I18n('value')
class TagModel(models.Model):

 value = models.CharField(max_length=23)

 def __serialize__(self, stream):
 stream.startElement('taggy', {})
 stream.characters(self.value)
 stream.endElement('taggy')

The __serialize__ method will be called by the serializer instead of the
regular handler. You get the xml stream as an argument and you’ve got to write
to it by calling the methods on it. see xml.sax.saxutils.XMLGenerator [http://docs.python.org/library/xml.sax.utils.html#xml.sax.saxutils.XMLGenerator]
for the correct api.

The same is True when you’ve got custom fields that should do something with
their values before you can use it (like storing data pickled). Implementing a
__serialize__ method in you custom field will make the serializer use your
implementation (for example SafeHTMLField
implements it’s own __serialize__ method to validate the xml before writing it
to the serializer stream).

Exclude certain relations from being followed by the serializer

Sometimes you want to have a simple foreign key relation, but you
don’t need the data of the related object in your xml. As a matter of fact,
it would degrade the performance of your view. You could mark the
ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] as serialize=False but that would make
the field simply disappear from the xml. You might only want to exclude it from
being rendered as a child of the parent object, but on the object itself you want
the foreign key rendered as usual.

You can mark any foreign key with a nofollow attribute and it will not be
followed, when the parent is serialized:

class Bar(models.ModelAdmin):
 foo = models.ForeignKey('Foo', related_name=bars)
 foo.nofollow = True

 label = models.CharField(233)

The foreign key will still be serialized as it always would, but the related
object will not be expanded on the parent. This means if I query Foo:

xml(Foo.objects.all())

I will not see any Bar objects as children of foo. But when querying Bar:

xml(Bar.objects.all())

You will still see that the foreign key is included in the xml.

	[1]	Xslt requires a python xslt package to be installed. Easymode can work with
lxml [http://codespeak.net/lxml/] ,
libxslt [http://xmlsoft.org/XSLT/python.html]

	[2]	While ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] relations are followed
‘inverse’ by the managers on the related model, this is not the case
for ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField]. Instead they are
followed ‘straight’.

Easymode does not follow ‘straight’ foreigkey relations because that
would cause a cycle, instead it only takes the value of the foreignkey,
which is an integer. If you do need some data from the related object
in your xml, you can define the
natural_key [http://docs.djangoproject.com/en/dev/topics/serialization/#serialization-of-natural-keys]
method on the related model. The output of that method will become
the value of the foreignkey, instead of an integer. This way you can
include data from a ‘straight’ related model, without introducing
cyclic relations.

	[3]	The default xslt, with template path: ‘xslt/model-to-xml.xsl’ comes
with easymode and looks like this:

<?xml version="1.0"?>
<!--
 model-to-xml.xsl

 Created by Lars van de kerkhof on 2009-07-30.
-->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output encoding="UTF-8" indent="yes" method="xml" />

 <!-- Render an object node -->
 <xsl:template match="object">
 <xsl:element name="{substring-after(@model,'.')}">
 <xsl:apply-templates select="field"/>
 <xsl:if test="object">
 <children>
 <xsl:apply-templates select="object"/>
 </children>
 </xsl:if>

 </xsl:element>
 </xsl:template>

 <!-- render a field node -->
 <xsl:template match="field">
 <xsl:if test="@type">
 <xsl:element name="{@name}">
 <xsl:copy-of select="@type"/>
 <xsl:copy-of select="@font"/>
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:if>
 </xsl:template>

 <!--
 ManyToManyField is only shown if not empty.
 ForeignKey is only shown if natural_key is defined on
 the related object.

 see http://packages.python.org/django-easymode/xslt/index.html#id2
 -->
 <xsl:template match="field[@to]">
 <xsl:if test="natural or object">
 <xsl:element name="{@name}">
 <xsl:copy-of select="@rel"/>
 <xsl:choose>
 <xsl:when test="count(natural) > 1">
 <xsl:for-each select="natural">
 <property><xsl:value-of select="."/></property>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="natural"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="object">
 <xsl:apply-templates select="object"/>
 </xsl:if>
 </xsl:element>
 </xsl:if>
 </xsl:template>

 <!-- just copy unmatched nodes -->
 <!-- so we know something is wrong -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- Parse the root node of the serialized xml -->
 <xsl:template match="django-objects">
 <root>
 <xsl:apply-templates/>
 </root>
 </xsl:template>

</xsl:stylesheet>

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Admin support for model trees with more than 2 levels of related items

Note

This is the documentation for the new tree, which is much more flexible
and powerful as the old one. for the old docs, see Admin support for model trees with more than 2 levels of related items (deprecated)

Easymode has full admin support. Since content easymode was designed to handle
is heavy hierarchic, easymode can also support this in the admin.

The single most annoying problem you will encounter when building django apps,
is that after you discovered the niceties of
inlines [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines], you find out that only
1 level of inlines [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines]
is supported. It does not support any form of recursion.

Easymode gives you the easymode.tree.admin package which gives you two
baseclasses you can use to make recursive inlines possible. Django let’s you define
both regular ModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin] as well
StackedInline [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.StackedInline] or
TabularInline [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.TabularInline] for your models. But it’s less known
that you can use them at the same time, for the same model. That is exactly what
we’re going to do to implement a nice admin tree. The result will look like this:

[image: ../_images/newtree.png]
Clicking the Add bottom model button will open a popup, just like with foreign keys, that can
be used to add a new item to the list. Clicking the Change link will move to the
edit view of the related item. This way you can nest as deep as you want.

Implementing the tree

As said to implement a tree you’ve got to define both an inline model admin as
a regular modeladmin for the model you want to inline:

class BottomAdmin(InvisibleModelAdmin):
 """
 I am using InvisibleModelAdmin as a base class here so I can get the
 parent_link functionality and also that BottomAdmin is not visible in
 the admin listing (see old tree for more info). I could've used
 LinkedItemAdmin as well, if I would've been interested in parent_link
 only. This is the change view for the inlined item.
 """
 parent_link = 'top'

class BottomLinkInline(LinkInline):
 """
 This is the inline view of the inlined item. It will de rendered as a
 link to the change view or add view of the inlined item.

 NOTE that you MUST define fields, which must only include the foreign key.
 Ofcourse you might want to include some more fields and put them as
 read_only_fields, to give a bit more info.
 """
 fields = ('top',)
 model = BottomModel

Also the model that holds the inlines, needs to extend a special admin class:

class TopAdmin(LinkedItemAdmin):
 """
 This is the top view that has the inlines. It has a special form and
 template to make it display the foreign key fields as links.
 """
 inlines = [BottomLinkInline]

That is all the code to implement one level of the tree. Note that because the
inlined items are real inlines, you can do all the funky stuff you used to
do with them like drag and drop reorder and such.

See easymode.tree.admin.abstract.LinkInline,
easymode.tree.admin.abstract.LinkedItemAdmin and
InvisibleModelAdmin for more info.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Easymode settings

AUTO_CATALOG

Easymode can manage a gettext catalog with your database content for you.
If AUTO_CATALOG is True, easymode will add every new object of a
model decorated with I18n to the gettext
catalog. The default is False.

How does gettext work

When existing content is updated in the MSGID_LANGUAGE on the
MASTER_SITE, gettext will try to updated the msgid’s in all the languages.
Therefor keeping the mapping between original and translation. There is a limit
on the ammount of change, before gettext can nolonger identify a string as a
change in an existing msgid. For example:

in the english django.po:
#: main.GalleryItem.title_text:32
msgid "I've got a car"
msgstr ""

in the french django.po:
#: main.GalleryItem.title_text:32
msgid "I've got a car"
msgstr "J'ai une voiture"

Now we update the main.GalleryItem.title_text in the db in english,
which will also change the english gettext catalog’s message id:

in the english django.po:
#: main.GalleryItem.title_text:32
msgid "I've had a car"
msgstr ""

gettext will now also update the message id in french so the link
between original and translation is kept.

in the french django.po:
#: main.GalleryItem.title_text:32
msgid "I've had a car"
msgstr "J'ai une voiture"

The location of the catalog can be controlled using LOCALE_DIR and
LOCALE_POSTFIX,

What does AUTO_CATALOG do?

example:

AUTO_CATALOG = False

With the above settings, no catalogs are managed automatically by easymode. You
have to manually generate them using easy_locale.

AUTO_CATALOG can also be used when you only need some (but not all)
of the internationalised models to auto update the catalog. For this to work
you need to set AUTO_CATALOG to False in settings.py:

AUTO_CATALOG = False

Then somewhere else, for example in your admin.py or models.py you can turn on
automatic catalog updates for specific models:

from models import News
import easymode.i18n

easymode.i18n.register(News)

Now only the News model will automatically update the catalog, but other models will
leave it alone. See easymode.i18n.register() for more info.

Ofcourse, for this to work you must have MASTER_SITE set to True.

In a nutshell, MASTER_SITE=False will disable all gettext updating, while AUTO_CATALOG=False,
still allows you to turn it on for selected models.

MASTER_SITE

The MASTER_SITE directive must be set to True if a gettext catalog
should be automatically populated when new contents are created. This way all
contents can be translated using gettext. You can also populate the catalogs
manually using the easy_locale command.

In a multiple site context, you might not want to have all sites updating the
catalog. Because the content created on some of these sites might not need to
be translated because it is not used on any other sites. Content can flow from
‘master site’ to ‘slave site’ but not from ‘slave site’ to ‘slave site’.

for more fine grained control over which models should be automatically added
to a gettext catalog, see AUTO_CATALOG.

example:

MASTER_SITE = True

MSGID_LANGUAGE

The MSGID_LANGUAGE is the language used for the message id’s in the gettext
catalogs. Only when a content was created in this language, it will be added to
the gettext catalog. If MSGID_LANGUAGE is not defined, the LANGUAGE_CODE
will be used instead. The msgid’s in the gettext catalogs should be the same for
all languages.

This setting should be used when there are different sites, each with a different
LANGUAGE_CODE set. These sites can all share the same catalogs.

example:

MSGID_LANGUAGE = 'en'

FALLBACK_LANGUAGES

The FALLBACK_LANGUAGES is a dictionary of values that looks like this:

FALLBACK_LANGUAGES = {
 'en': [],
 'hu': ['en'],
 'be': ['en'],
 'ff': ['hu','en']
}

Any string that is not translated in ‘ff’ will be taken from the ‘hu’ language.
If the ‘hu’ also has no translation, finally it will be taken from ‘en’.

LOCALE_DIR

Use the LOCALE_DIR setting if you want all contents to be collected in a
single gettext catalog. If LOCALE_DIR is not specified, the contents will
be grouped by app. When a model belongs to the ‘foo’ app, new contents will be
added to the catalog located in foo/locale.

You might not want to have the dynamic contents written to your app’s locale,
if you also have static translations. You can separate the dynamic and static
content by specifying the LOCALE_POSTFIX.

example:

PROJECT_DIR = os.dirname(__file__)
LOCALE_DIR = os.path.join(PROJECT_DIR, 'db_content')
LOCALE_PATHS = (join(LOCALE_DIR, 'locale'),)

(Note that by using LOCALE_PATHS the extra catalogs are loaded by django).

LOCALE_POSTFIX

The LOCALE_POSTFIX must be used like this:

LOCALE_POSTFIX = '_content'

Contents that belong to models defined in the ‘foo’ app, will be added to the catalog
located at foo_content/locale instead of foo/locale.

USE_SHORT_LANGUAGE_CODES

Easymode has some utilities that help in having sites with multiple languages.
LocaliseUrlsMiddleware and LocaleFromUrlMiddleWare help with adding
and extracting the current language in the url eg:

http://example.com/en/page/1

When having many similar languages in a multi site context, you will have to
use 5 letter language codes:

en-us
en-gb

These language codes do not look pretty in an url:

http://example.com/en-us/page/1

and they might even be redundant because the country code is allready in the domain
extension:

http://example.co.uk/en-gb/page/1

When USE_SHORT_LANGUAGE_CODES is set to True, the country codes are removed in
urls, leaving only the language code. This means the url would say:

http://example.com/en/page/1

even when the current language would be ‘en-us’.

THIS DIRECTIVE ONLY WORKS WHEN THERE IS NO AMBIGUITY IN YOUR LANGUAGES DIRECTIVE.

This means i can not have the same language defined twice in my LANGUAGES:

LANGUAGES = (
 ('en-us', _('American English')),
 ('en-gb', _('British')),
)

This will NOT work because both languages will be displayed in the url as ‘en’ which is
ambiguous.

SKIPPED_TESTS

It might be that some tests fail because you’ve got some modules disabled or you can not comply
to the test requirements. This is very annoying in a continuous integration environment. If you
are sure that the failing tests cause no harm to your application, they can be disabled.

SKIPPED_TESTS is a sequence of test case names eg:

SKIPPED_TESTS = ('test_this_method_will_fail', 'test_this_boy_has_green_hair')

will make sure these 2 tests will not be executed when running the test suite.

RECURSION_LIMIT

When a model tree is not a dag, easymode can get into an infinite recursion when producing
xml, resulting in a stack overflow. Because xml is produced using xml.sax [http://docs.python.org/library/xml.sax.html#module-xml.sax], which is
a c-extension, your app will simply crash and not raise any exceptions. Easymode will try
to help you, by never allowing recursion to go deeper then RECURSION_LIMIT. The default
is set to:

RECURSION_LIMIT = sys.getrecursionlimit() / 10

which usually means 100. Take care when increasing this value, because most of the time when
the limit is reached it actually IS caused by cycles in your data model and not because of
how many objects you’ve got in your database.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Management Commands

easy_locale

Note

Easy locale will update the gettext catalogs with content from the database.
This can be specific to a single app or model.

easy_reset_language

Note

This command will clear the database fields in one language for a specific app
or model, so the translation will once again come from the catalog, instead of
the database.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Easyfilters

Easymode comes with 3 templatetags that can be used to modify
existing templates so they can be used in a multilingual
environment.

strip_locale()

strip_locale() will
have an url as an argument and if there is a locale in the url,
it will be stripped:

{% load 'easyfilters' %}

{{ 'http://example.com/en/greetings'|strip_locale }}

this will render as: http://example.com/greetings so the ‘en’
part will be removed from the url.

You can use this filter in combination with
LocaliseUrlsMiddleware. The middleware
will add the current language to any urls that do not have the
language code in the url yet.

fix_locale_from_request()

Fixes the language code as follows:

If there is only one language used in the site, it strips the language code.
If there are more languages used, it will make sure that the url has the current
language as a prefix.

usage:

{% load 'easyfilters' %}

{{ 'http://example.com/en/greetings'|fix_locale_from_request:request.LANGUAGE_CODE }}

Suppose request.LANGUAGE_CODE was ‘ru’ then the output would become:

http://example.com/ru/greetings

Suppose settings.LANGUAGES contained only one language, the output
would become:

http://example.com/greetings

You probably do not need this templatetag if you are using
LocaliseUrlsMiddleware.

fix_shorthand()

Use this if you want to use USE_SHORT_LANGUAGE_CODES.

fix_shorthand()
will always return the correct locale to use in an url,
depending on your settings of USE_SHORT_LANGUAGE_CODES.

usage:

{% load 'easyfilters' %}

{{ request.lANGUAGE_CODE|fix_shorthand }}

Suppose request.LANGUAGE_CODE is ‘fr-be’ and
USE_SHORT_LANGUAGE_CODES is set to True,
the output would become:

fr

If USE_SHORT_LANGUAGE_CODES is set to False
the output would be:

fr-be

If request.LANGUAGE_CODE is not a five letter language code, nothing
happens.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.middleware

Google Analytics

Easymode has middleware to support caching in combination with google analytics.
Google analytics updates a session cookie on each request. Because django’s
SessionMiddleware places cookie in it’s vary header, you will save every single
request to the cache if you use it.

Internationalization related middleware

When using the internationalization middlewares, you should include easymode.urls
in your url conf:

(r'^', include('easymode.urls')),

This will make sure that when you have defined get_abolute_url on your model,
the view on site button will lead you to the page in the language you have currently
selected.

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

Injecting extra data into the XSLT

If you want to have some extra data passed to the xslt, which
can not be obtained by the serializer you can make some view
helpers that create xml and pass it as a stringparam to the xslt.

Reasons why you would need this:

	You’ve got a model that has a foreign key to itself. You need this if you
want some kind of hierarchical page tree or something. You might want to
put the self referencing ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to serialize=False. This
way it can not mess up the serializer, but you don’t have a hierarchic structure
in your xml.

	You pull data from an external source.

	You have to do some processing on the models before they get turned into xml.

	You have some data not coming from models that needs to be passed to the xslt.

In all these cases you can use XmlPrinter to
make some well formed unicode safe xml you can feed to the xslt.

Here is an example where some static strings get passed to the xslt. These
strings are translatable using django’s regular i18n mechanism, but they are
not in the database:

from django.utils.translation import ugettext as _

stringlib = dict(
 close_button = _('Close'),
 next_button = _('Next'),
 the_end = _("That's all folks")
)

def render_stringlib_xml():
 """Renders the stringlib xml"""
 stream = StringIO()
 xml = XmlPrinter(stream, settings.DEFAULT_CHARSET)
 xml.startElement('stringlib', {'id':'stringlib'})
 for (key, value) in stringlib.iteritems():
 xml.startElement(key, {})
 xml.characters(value)
 xml.endElement(key)
 xml.endElement('stringlib')

 byte_string = stream.getvalue()
 return byte_string.decode('utf-8')

Before you pass the rendered xml string, you should prepare it using
prepare_string_param():

from easymode.xslt import prepare_string_param as q
from easymode.xslt.response import render_to_response

params = {
 'stringlib' : q(render_stringlib_xml()),
}

qs = Foo.objects.all()

return render_to_response('xslt/model-to-xml.xsl', qs, params)

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.urls

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.i18n

easymode.i18n.decorators

easymode.i18n.admin.decorators

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.tree

easymode.tree.xml.decorators

easymode.tree.xml.query

easymode.tree.admin.relation

easymode.tree.admin.abstract

easymode.tree.introspection

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.xslt

easymode.xslt.response

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.utils

easymode.utils.xmlutils

easymode.utils.languagecode

easymode.utils.polibext

easymode.utils.standin

easymode.utils.template

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.admin.utils

easymode.admin.models.fields

easymode.admin.forms.fields

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-easymode 1.4b4 documentation

easymode.debug

Tools for debugging python applications

	
easymode.debug.stack_trace(depth=None)

	returns a print friendly stack trace at the current frame,
without aborting the application.

	Parameters:	depth – The depth of the stack trace. if omitted, the entire
stack will be printed.

usage:

print stack_trace(10)

easymode.debug.middleware

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-easymode 1.4b4 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 easymode	

 	
 	
 easymode.debug	

 	
 	
 easymode.tree	

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-easymode 1.4b4 documentation

Index

 E
 | S

E

 	

 	easymode.debug (module)

 	

 	easymode.tree (module)

S

 	

 	stack_trace() (in module easymode.debug)

 Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

 _images/non-localized.png
rd / Log out

Home > Foobar> Foos » . 1 am a foo
Change foo [sistory]

Bar: 1amafoo

Pellentesque nibh felis, eleifend id, commodo in, interdum vitae, leo. Praesent eu elit. Ut eu ligula. Class aptent
tacit sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Maecenas elementum augue nec
. Proin auctor lorem at nibh. Curabitur nulla purus, feugiat id, elementum in, loborts quis, pede. Vivamus
sodales adipiscing sapien. Vestibulum posuere nulla eget wisi. Integer volutpat iigula eget enim. Suspendisse
vitae arcu. Quisque pellentesque. Nullam conseguat, sem vitae rhoncus tristigue, mauris nulla fermentum est,
bibendum ullamcorper sapien magna et quam. Sed dapibus vehicula odio. Proin bibendum gravida nisl. Fusce
lorem. Phasellus sagittis, nulla in hendrerit laoreet, libero lacus feugiat urna, eget hendrerit pede magna vitae
lorem. pracsent mauris.

Website: hitp:) fexample.com/.
Address: examplestreet 20
City (en-us):

City (de): Bonn

City (en): example

_images/localized.png
root. Change password / Log

Home » Foobar> Foos » . 1 am a foo
Change foo [sistory]

Bar: 1ama foo

Barstool: Pellentesque nibh felis, eleifend id, commodo in, interdum vitae, leo. Praesent eu elit. Ut eu ligula. Class aptent
taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenacos. Maecenas elementum augue nec
. Proin auctor lorem at nibh. Curabitur nulla purus, feugiat id, elementum in, loborts quis, pede. Vivamus
sodales adipiscing sapien. Vestibulum posuere nulla eget wisi. Integer volutpat iigula eget enim. Suspendisse
vitae arcu. Quisque pellentesque. Nullam conseguat, sem vitae rhoncus tristigue, mauris nulla fermentum est,
bibendum ullamcorper sapien magna et quam. Sed dapibus vehicula odio. Proin bibendum gravida nisl. Fusce
lorem. Phasellus sagittis, nulla in hendrerit laoreet, libero lacus feugiat urna, eget hendrerit pede magna vitae
lorem. Pracsent mauris.

Website: hitp:) fexample.com/

Address: examplestreet 20

city: example

_images/newtree.png
Home > Tests » Top models » Rising to the top

Change top model

The title: Rising to the top.

The subtitle: By agallah and Sean Price

Bottom Models

Bottom Model: Very nice bombastic record 0 Delete
Edit bottom < Change
model

Bottom Model: Agallah drops the boombastic 0 Delete

Edit bottom < Change
model

Bottom Model: #3

Add bottom %
model

% Delete Save and add another | Save and continue editing m

details.html

 Navigation

 		
 index

 		
 modules |

 		django-easymode 1.4b4 documentation »

Why does easymode exist?

Easymode is an aspect oriented toolkit that helps making xml based flash websites easy.

The tools easymode provides are centered around the concept of hierarchy.
The basic structure of a flash frontend is hierarchical, because of
the hierarchical nature of the display list. The data that feeds such a frontend,
then will become hierarchical very quickly, should a site need to be mostly dynamic.

To enable a fully dynamic flash website, the technology used should support:

		Rapid creation/modification of data structures.

		A mechanism to organise these data structures in a hierarchy.

		Enable administration of these data structures with minimal effort.

		Enable transportation of all the information in such a hierarchical
data set to a flash frontend.

When sites need to be internationalized, a fifth requirement forms:

		Individual components of a hierarchy should be internationalized.

The last statement says individual components because the entire hierarchy
need not change amongst different localizations, only the components in the
hierarchy.

Django provides requirement 1,2 and 3:

		Django models are the data structures, they are compact and are easily changed.

		Foreign keys can be used as a child parent relation to create a hierarchy.

		The django admin enables administration of models with minimal effort.

Easymode provides requirement 4 and 5:

		An entire hierarchy of django models can be turned into xml by easymode and
transformed using xslt (Automatic generation of xml from models using xslt).

		Easymode provides full internationalization of models, integrated into the django admin with support
for hierarchical data (Internationalization of models, Localization of models in django admin, Admin support for model trees with more than 2 levels of related items).

Ofcoure, easymode also streamlines some of the things django provides, by integrating models,
hierarchy by foreign key relations and admin support.

The benefits of using django with easymode to create flash backends are:

		A sane database, which can also feed a different frontend.

		Easy maintenance because of simplicity of django models.

		Code can be reused easily, because of modularity of django apps.

		Data transport layer can be very simple because of the functional
nature of xslt, which fits hierarchical data perfectly. (Can also be reused very easy)

		Because the data is transported as xml, flash developers can start
development using static xml before the backend is finished.

		Actual mechanism to translate the content from one language to another
(Translation of database content using gettext)

		Structure is uniform in all layers of the application. (backend, transport, frontend)

 © Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

_images/invisible.png
Site administration

Groups #Add g Change
Users 4Add # Change

Foos 4Add 4 Change

Sites. 4Add 4 Change

_images/related.png
Change foo

Bar: foo

Barstool:

Website: http://example.com/

City: wal

Address: et
R

Navigateto: B object

Navigateto: B object

Navigateto: B obect

+*

wou e

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-easymode 1.4b4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

tree/oldtree.html

 Navigation

 		
 index

 		
 modules |

 		django-easymode 1.4b4 documentation »

Admin support for model trees with more than 2 levels of related items (deprecated)

Note

This is the documentation for the OLD tree, which is deprecated. for the
docs on the new tree, see Admin support for model trees with more than 2 levels of related items.

Easymode has full admin support. Since content easymode was designed to handle
is heavy hierarchic, easymode can also support this in the admin.

The single most annoying problem you will encounter when building django apps,
is that after you discovered the niceties of
inlines [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines], you find out that only
1 level of inlines [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines]
is supported. It does not support any form of recursion.

Easymode can not make
InlineModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#inlinemodeladmin-objects]
recursive either, because that would become
a mess. What is can do, is display links to all related models. This way you have
them in reach where you need them. There is no need to go back to the admin and
select a different section to edit the related models.

[image: ../_images/related.png]
In the above picture, at the bottom of the Bars fieldset, there is a small
+ button [1]. Using this button you can create new Bar objects which have a
relation to the current Foo object. Just like with foreign key fields, the
+ button [1] opens a popup in which you can create a new related item.

The items above the + button [1] are all Bar objects that have a foreign key
which points to the current Foo object. Clicking them will let you edit them.

Implementing the tree

To implement the tree first of all, you have to ensure that easymode comes
before django.contrib.admin in the INSTALLED_APPS section of your settings
file. This is because easymode needs to override the admin/index.html template.
Since the related items that point to Foo can now be accessed from the foo
change_view, it is nolonger needed that Bar is displayed in editable models list
of the Foobar app. Just like
InlineModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#inlinemodeladmin-objects]
we want the ‘inlined’
models to be excluded from the app list.

[image: ../_images/invisible.png]
This is how we want the Foobar app listing to look, with Foo visible and
Bar excluded from the listing. In fact, that is what you can do with the
ModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin] classes inside easymode.tree.admin.relation, as long as
you make sure that the admin/index.html template is read from the easymode
templates folder.

This is how the admin is defined to get the screenshots:

from django.contrib import admin
from easymode.i18n.admin.decorators import L10n
from easymode.tree.admin.relation import *

from foobar.models import Foo, Bar

@L10n
class FooAdmin(ForeignKeyAwareModelAdmin):
 """Admin class for the Foo model"""
 model = Foo
 invisible_in_admin = False

 fieldsets = (
 (None, {
 'fields': ('bar', 'barstool')
 }),
 ('An thingy', {
 'fields': ('website', 'city', 'address')
 }),
)

class BarAdmin(InvisibleModelAdmin):
 model = Bar
 parent_link = 'foo'

admin.site.register(Foo, FooAdmin)
admin.site.register(Bar, BarAdmin)

As you can see the ModelAdmin classes used are
InvisibleModelAdmin and
ForeignKeyAwareModelAdmin.

ForeignKeyAwareModelAdmin is aware
of the models that have a ForeignKey pointing to the model which it
makes editable.

In this case, FooAdmin makes Foo editable, and Bar has a
ForeignKey which points to Foo. FooAdmin is fully aware of
this! In fact it will make you aware as well, because it will display
all the related Bar models in Foo‘s change_view().

As said we’d like to have Bar be invisible in the Foobar app listing.
That is where InvisibleModelAdmin
comes into play. Using InvisibleModelAdmin
instead of a normal ModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin] will hide the model from the app listing.

You could even use a ForeignKeyAwareModelAdmin
in place of the InvisibleModelAdmin
because it can be made invisible as well. Using these 2 ModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin] classes,
mixed with regular
InlineModelAdmin [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#inlinemodeladmin-objects]
you can create deep trees and manage them
too.

		[1]		(1, 2, 3) The ‘+’ button and the fieldset for all the related items will only
show up AFTER you save the model. This is because you can’t create
relations to objects that do not yet exist.

 © Copyright 2009, Lars van de Kerkhof.
 Created using Sphinx 1.2.2.

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

